Boundary observability of time discrete Schrodinger equations
نویسنده
چکیده
Abstract: In this paper we study the boundary observability estimate of time discrete Schrödinger equations in a bounded domain. By means of a time discrete version of the classical multiplier technique, we prove the uniform observability inequality of the solutions in an appropriate filtered space in which the high frequency components have been filtered. In this way, the well-known boundary observability property of the Schödinger equation can be reproduced as the limit, as , h → 0 of the observability of the time discrete one. Better than the existing result in Ervedoza et al. (2008), our alterative proof shows the rigorous relationship between the filtering parameter and the optimal observation time T. Moreover, the latter one tends to zero as the time scale tends to zero. Finally, the optimality of the order of the filtering parameter is also established for lower dimensional case.
منابع مشابه
The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملBinding Energies for Discrete Nonlinear Schrodinger Equations
The standard quantum discrete nonlinear Schrodinger equation with periodic boundary conditions and an arbitrary number of freedoms (f) is solved exactly at the second and third quantum levels. I f f -+ x at a sufficiently small level of anharmonicity c j ) , the value for soliton binding energy from quantum field‘theory (QFT) in the continuum limit is recovered. For fixed however, the QFT resul...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJMNO
دوره 1 شماره
صفحات -
تاریخ انتشار 2009